Redes e retornos crescentes: Krugman encontra Barabasi

Numa rede randômica os nós têm uma quantidade aleatória de links. Numa rede complexa scale-free e com hubs, alguns nós têm a maioria dos links e a grande maioria dos outros nós tem pouquíssimos links. Uma distribuição gaussiana caracteriza o primeiro tipo de rede enquanto que uma distribuição do tipo power law caracteriza o segundo tipo de rede. Em redes não randômicas existe uma hierarquia onde os hubs mandam pois tem muito mais acesso aos outros links do que os nós “comuns”, reina uma “topocracia” (ver Borondo et al 2014). Existe uma competição desigual no sentido de que ao longo do tempo um determinado nó coletou muitas arestas e virou um hub, com mais acesso a outras arestas. Um nó comum tem muita dificuldade de competir com um hub pois parte de uma situação inicial pobre em termos de estoque de links acumulados.

Barabasi e sua equipe criaram um modelo simplificado que reproduz com incrível precisão esse tipo de dinâmica de redes encontradas na vida real. Trata-se de um modelo simples com três regras: i)uma rede que cresce com novos nós sendo incorporados por links a outros nós a cada momento do tempo; ii)uma regra de conexão preferencial onde cada novo nó prefere se conectar a um nó já existente com muitas conexões (preferencial attachment) e iii) fitness: alguns nós tem competência maior do que outros para acumular links, o que pode em tese ajudar um nó novo a superar a dificuldade de não ter links quando entra na rede.

Com essas três regras Barabasi e sua equipe reproduzem em termos formais as características desse tipo de rede encontrada no mundo real; inclusive em termos de surgimento de distribuições do tipo power laws. O mecanismo de preferential attachment de Barabasi nada mais é do que a conhecida dinâmica de retornos crescentes ilustrado com a urna de Polya e depois generalizado para várias urnas por Yules. H. Simon mostrou que power laws surgem como consequência possível de processos do tipo Yules (Newman 2010). Para estudos em economia essas descobertas são de grande importância pois formalizam e trazem um ganho analítico enorme para insights e regularidades empíricas importantes já conhecidas. Esse tipo de análise traz muitas novas conclusões, especialmente para as discussões da nova geografia econômica e comércio internacional (que A. Marshall, Krugman et al (1999) entre outros já haviam destacado). Esse tipo de dinâmica das redes de Barabasi ilustra bem os processos de retornos crescentes e “path dependent” analisados por Arthur (2015) em seus trabalhos sobre complexidade.