Na esteira de uma série de acidentes fatais de aviões comerciais devido a turbulências entre 1975 e 1985, a NASA e a FAA pesquisaram o fenômeno e avaliaram uma série de instrumentos que poderiam ajudar os pilotos e controles de solo a lidar – ou evitar – o problema. Este trabalho pavimentou o caminho para os sistemas de detectores de turbulências obrigatórios encontrados em todos os aviões de passageiros hoje. Desde que entrou pela primeira vez no inventário da NASA em 1974, um avião da Boeing batizado de NASA 515 tem sido um laboratorio de testes para pesquisas em uma infinidade de questões que afetam a segurança, eficiência e capacidade das aeronaves. Por exemplo pilotos treinados tiveram a experiência de voar através de ventos potencialmente perigosos para provar que dispositivos de alerta antecipados realmente podem dar aos pilotos preciosos segundos extras para evitar condições meteorológicas perigosas. Como resultado, este laboratório voador e suas instalações de apoio têm sido responsáveis pela rápida adoção de novas tecnologias de aviação pela indústria dos EUA. O NASA 515 é o primeiro B-737 construído pela Boeing e fortemente modificado pela NASA com amplo orçamento publico. Ele tem duas cabines separadas – uma cabine dianteira convencional do B-737 que fornece suporte operacional e backup de segurança, e uma cabine de comando de pesquisa operacional posicionada atrás do que era a seção da cabine de primeira classe da aeronave. O avião foi usado durante anos como base para pesquisa de fronteira em aeronáutica com dinheiro publico da NASA tendo depois a maioria dos avanços tecnológicos transferidos pra a própria Boeing. Abaixo uma lista com alguns exemplos:
- Electronic Flight Displays [1974-75].
Boeing 757/767 aircraft have cathode ray tube electronic attitude indicators and horizontal situation displays. Technology developed and first demonstrated on the Langley B-737 research aircraft. These instruments have contributed to both safety and efficiency of flight through better comprehension by the pilot of airplane’s situation relative to its environment. - Microwave Landing Systems (MLS) [1977-78].
Conducted flights with the FAA to evaluate the MLS performance as a precision landing guidance system. As a result of joint flight demonstrations, the U.S. MLS system was adopted as the international standard approach and landing guidance system. - Precision Flare Control [1978-80].
Aircraft landing-flare control computations, developed and flight tested to tighten touchdown area, demonstrated that improved touchdown accuracy could reduce time aircraft on runway. Technology adopted by Boeing. - Profile Descent Program [1979-80].
Conducted flights to evaluate aircraft descent procedures from high altitude using automation to achieve efficient descent paths for fuel and time savings. - Wing Surface Coating [1980-81].
Joint program with Boeing to evaluate advanced paints for improved laminar flow over wing surfaces. Flight tests pointed to net drag reductions for commercial airliners. - Digital Autonomous Terminal Access Communications (DATAC) [1983-88].
Joint program with Boeing to develop, flight test and demonstrate practical use of onboard computer network to communicate between aircraft electronic flight systems. NASA/Boeing DATAC system adopted as industry standard. - Runway Friction Program [1984-85].
Conducted tests to improve and predict aircraft ground handling performance on slippery runways during bad weather. Technology used by FAA. Results adopted for use at most commercial airports worldwide. - Precision Guidance: “Airport ’85” [1985].
Joint program with U.S. Air Force that required unique guidance capability to verify proposed approach path to new Denver airport would not affect critical satellite link of Air Force communications system. - Total Energy Control System (TECS) [1985-92].
Joint program with Boeing that validated, through flight tests, new computations to improve fuel efficiency during climb and descent maneuvers. Technology applied on “Condor,” a remotely piloted vehicle built by Boeing for the Department of Defense. - Takeoff Performance Monitoring System (TOPMS) [1985-91].
Display formats, computations and alerts developed and demonstrated to improve information available to crew for assessing aircraft takeoff performance. McDonnell Douglas programmed a TOPMS system in simulation to assess use for hypersonic vehicles. Boeing considered technology for B-777. - Helmet-Mounted Display [1989].
Joint program with McDonnell Douglas Aircraft Co. tested new display concepts applicable to advanced high-speed vehicles without conventional windshields. Technology used by McDonnell Douglas for high-speed civil transport program feasiblity studies. - Airborne Information Transfer System [1989-90].
Conducted flight tests to evaluate benefits of using electronic data link vs. voice as primary communications system between aircraft and air traffic control. Results used in developing government-industry design and operational standards. Technology adopted for use in newer B-747 and all B-777 cockpits. - GPS Performance Evaluation [1989-90].
Joint program with Honeywell to assess GPS (Global Positioning Satellite) performance for self-sufficient landing guidance system for proposed reusable spacecraft and for commercial aircraft applications. Technology used by Honeywell to improve airplane GPS systems now in commercial use. First GPS autoland of full-sized transport in United States. - Engine Monitoring and Control System [1991].
Engine display format developed and tested by NASA to improve aircrew awareness of engine status when conditions are abnormal. McDonnell Douglas evaluating technology for next generation MD-XX aircraft. - Airborne Windshear Sensors [1990-93].
With industry participation, joint program with FAA to develop and flight test airborne wind shear detection sensors. B-737 flight tested five separate wind shear measurement technologies. Results applied by industry to develop commercial wind shear sensors. The wind shear hazard index, developed as part of the flight program, is industry measurement standard and basis for FAA certification. - Advanced High-Lift Technologies [1991-Present].
Flight test data will support new NASA computer fluid flow and wind tunnel techniques for developing advanced wing designs. This technology will be a tool for designing more efficient high-lift wings. - Optical Propulsion Management Interface System [1991-Present].
Joint program with McDonnell Douglas to flight test and evaluate use of fiber optic lines as communication link between pilot and engine. McDonnell Douglas and Boeing planning to apply technology to next generation commercial aircraft.
Referencias:
https://www.nasa.gov/centers/langley/news/factsheets/B-737.html
https://stringfixer.com/pt/Langley_Research_Center
livro sobre o tema:
Enquanto aqui, uma empresa que poderia representar a inclusão do Brasil na indústria automotiva – a Gurgel- foi desprezada e preterida até para o lançamento do ” novo fusca” em 1993